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Abstract

Partial differential equations with random coefficients appear for example in reliability problems and uncertainty prop-
agation models. Various approaches exist for computing the stochastic characteristics of the solution of such a differential
equation. In this paper, we consider the spectral expansion approach. This method transforms the continuous model into a
large discrete algebraic system. We study the convergence properties of iterative methods for solving this discretized sys-
tem. We consider one-level and multi-level methods. The classical Fourier mode analysis technique is extended towards the
stochastic case. This is done by taking the eigenstructure into account of a certain matrix that depends on the random
structure of the problem. We show how the convergence properties depend on the particulars of the algorithm, on the dis-
cretization parameters and on the stochastic characteristics of the model. Numerical results are added to illustrate some of
our theoretical findings.
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1. Introduction

Mathematical models for scientific and engineering problems often take the form of systems of ordinary or
partial differential equations (PDEs). Such models usually involve certain parameters, for example the coeffi-
cients in the differential operator, the initial and boundary conditions, and the forcing function. Typically, all
model parameters are assumed to be known exactly. However, in realistic situations this assumption often
does not hold, as many of the parameters may have a random or stochastic character. More advanced models
take this stochastic nature into account. Certain components of the system are then modelled as random vari-
ables, random fields or random processes. In that case one is interested in answering the so-called uncertainty
propagation question: ‘‘Given the stochastic properties of the mathematical model, what are the stochastic
characteristics of the solution?’’

The numerical solution of PDEs with random coefficients can be calculated by using statistical or deter-
ministic methods [1]. The most well-known statistical method is the Monte Carlo simulation method [2].
The stochastic model parameters are sampled repeatedly, reducing the problem to the solution of a deter-
ministic PDE for each sample. The stochastic properties of the solution are subsequently determined by a
statistical analysis of the obtained set of PDE solutions. Deterministic methods involve the direct treatment
of the stochastic PDE, i.e., by directly computing certain stochastic properties of the solution. Examples are
the perturbation method [3], the variance propagation algorithm [4], and the spectral expansion approach
[5,6]. In the first two methods, deterministic equations are constructed for the expectation and for the var-
iance of the solution, and for a covariance matrix. In this work, we will consider the third approach. It
transforms a system of PDEs with random parameters into a deterministic linear system by means of a pro-
jection onto a certain set of random basis polynomials. The method allows the extraction, in a post-process-
ing step, of any statistical information desired, such as moments of the solution or the probability of certain
events related to the PDE.

Basically, the linear system generated by the spectral expansions approach, corresponds to the discretiza-
tion matrix of a large system of coupled deterministic PDEs. The size of the system grows rapidly with the
required spatial accuracy and with the required accuracy in the stochastic dimension. Different ways of
enhancing the performance of the expansion method have been investigated in recent years. For example,
by carefully choosing the polynomials to include in the random polynomial basis the size [7] and the complex-
ity of the resulting system can be reduced [8,9]. By developing multi-level solution algorithms the cost of solv-
ing the system can be optimized [10,11].

In this work, we analyze the convergence behavior of multigrid applied to PDEs with random coeffi-
cients. This is done by extending the local Fourier analysis (LFA) technique for deterministic problems
[12–14] to the stochastic case. The LFA accurately predicts the convergence factors observed in practice,
and it provides valuable insights in the dependence of the convergence on the model characteristics, the dis-
cretization parameters and the algorithmic components. The paper is organized as follows. In Section 2 the
model problem is presented. A brief summary is given of the different steps in the spectral expansion
method, and the basic ideas underlying the considered iterative methods are explained. In Section 3 we sug-
gest an alternative set of random basis polynomials. The use of these polynomials leads to a complete
decoupling of the stochastic PDE into a set of deterministic PDEs of the same type. Although perhaps only
of limited use from a practical point of view, this set of polynomials does prove to have interesting theo-
retical properties. Section 4 explains how the LFA can be extended to the stochastic case. A series of two-
level convergence factors are derived for various multigrid components and strategies. The sharpness of the
theoretical convergence factors are verified in Section 5 by extensive numerical experiments. Finally, in Sec-
tion 6, we formulate some conclusions.

2. The model problem and its solution by stochastic expansion

2.1. A two-dimensional diffusion equation

We consider a two-dimensional steady-state diffusion equation where the diffusion coefficient aðx;xÞ mul-
tiplying the y-derivative is a random field,
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o2uðx;xÞ
ox2

þ aðx;xÞ o
2uðx;xÞ

oy2
¼ RHSðxÞ; ð1Þ
with x ¼ ðx; yÞ 2 D, the spatial domain, and x 2 X, a sample space. The sample space X is part of a complete
probability space ðX;F;PÞ, with F a r-algebra and P a probability measure. The random field aðx;xÞ is de-
fined as the mapping D� X! R. For a given x 2 D, aðx;xÞ is a random variable with respect to ðX;F;PÞ.
The boundary conditions and the forcing term are allowed to have random parameters as well. The conver-
gence rates obtained through local Fourier analysis do not depend on the boundary conditions and the forcing
term directly. Next, in Sections 2.2 and 2.3, we will detail the discretization of (1). In Section 2.4 we will recall
the multigrid approach towards solving the discrete stochastic problem [10,11].

2.2. Discretization of the random part of the problem

The random field aðx;xÞ can be expanded into an infinite series of terms of decreasing importance, by
means of a so-called Karhunen–Loève (KL) expansion [5,6,15],
aðx;xÞ ¼ a0ðxÞ þ
X1
i¼1

aiðxÞniðxÞ: ð2Þ
The function a0 is the mean of the random field; the functions ai are suitably scaled (deterministic) eigenfunc-
tions appearing in the spectral representation of the covariance function of the random field. The random
coefficients niðxÞ are uncorrelated random variables with zero mean, and are assumed to be linearly indepen-
dent. For notational simplicity we will further on write the random variable niðxÞ as ni. For practical use the
KL-expansion is truncated, say after the term in nN , ignoring the least significant terms. This truncated KL-
expansion will be denoted as aKLðx;xÞ. Any boundary conditions and/or forcing terms that are modelled as
random fields are treated similarly. This may result in an additional set of independent random variables
fnigi¼Nþ1;...;N� .

Next, we consider the discretization of the PDE solution uðx;xÞ and we start with the random space dimen-
sion. Let L2ðX;F;PÞ be a Hilbert space of square integrable functions of all N* random variables ni on
ðX;F;PÞ. We shall construct a finite dimensional subspace S of L2ðX;F;PÞ defined through a set of Q basis
functions fWlgl¼1;...;Q in the random variables n1; . . . ; nN� . Let n denote a vector containing the random variables
n1; . . . ; nN� . The space S is equipped with an inner product defined by haðnÞbðnÞi ¼

R
X aðnÞbðnÞwðnÞdn, with wðnÞ

denoting the probability density corresponding to n. This inner product actually corresponds to the expectation
of the product of its arguments. Several approaches have been proposed to construct S, e.g. [5,8,16,17]. Here,
we shall employ an orthonormal basis of multivariate polynomials Wl that are globally defined in each random
variable ni. These multivariate polynomials are built using series of univariate polynomials fungn¼1;2;... of degree
n in ni and orthonormal w.r.t. the probability measure corresponding to ni. That is,
humunii :¼
Z

umðniÞunðniÞwðniÞdni ¼ dmn;
with dmn the Kronecker delta. In particular, for some N*-tuple ðm1; . . . ;mN� Þ of positive integers, we have
Wlðn1; . . . ; nN� Þ ¼
YN�
i¼1

umi
ðniÞ: ð3Þ
Two criteria are often considered to determine basis functions of the form (3). One may limit the total degree
of the polynomial to a given value P, i.e.,

PN�

i¼1mi 6 P . The total number of basis functions, Q, is then given by
ðN � þ PÞ!=N �!P ! [10]. Alternatively, one may limit the degrees of the univariate factors separately, i.e.
mi 6 ni; i ¼ 1; . . . ;N � for a given set of ni-values. In this case Q ¼

QN�

i¼1ðni þ 1Þ [9].
Using the first criterion, a so-called Generalized Polynomial Chaos basis [16,1] can be constructed. The uni-

variate polynomials are chosen from the Wiener–Askey scheme according to the probability distributions of
the uncorrelated random variables in (2). In case of a set of Gaussian variables n, this procedure results in a
basis of multivariate Hermite polynomials. This basis is also called the Polynomial Chaos (PC) basis and is
used in the original spectral approach of Ghanem [5,6]. The second criterion can be used to create a double
orthogonal polynomial basis, as proposed by Babuška [8].
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Having specified an appropriate random basis, the solution uðx;xÞ is approximated by a linear combina-
tion of basis functions with deterministic coefficients ulðxÞ. When the basis functions are collected together in
the column vector W and the coefficients in a column vector uðxÞ, we can write
uðx;xÞ ¼
XQ

l¼1

ulðxÞWlðn1; . . . ; nN� Þ ¼ WTuðxÞ: ð4Þ
2.3. Reduction to a fully discrete deterministic linear system

We replace the random field aðx;xÞ by the truncated expansion aKLðx;xÞ and look for a solution of the
form (4) such that the residual is minimized in some appropriate sense. Typically one computes the solution
by using a least squares approach, requiring orthogonality of the residual to the space determined by the cho-
sen Polynomial Chaos basis. Taking the linearity of the inner product into account gives
hWWTi o
2uðxÞ
ox2

þ haKLðx;xÞWWTi o
2uðxÞ
oy2

¼ hRHSðxÞWi:
The real symmetric matrix haKLðx;xÞWWTi is independent of the solution and will be denoted as MðxÞ,
MðxÞ :¼ haKLðx;xÞWWTi ¼ a0ðxÞhWWTi þ
XN

i¼1

aiðxÞhniWWTi: ð5Þ
For Gaussian random variables this matrix is easily determined [18]. Using the orthonormality of the basis
functions, the above equation can further be simplified to
o2uðxÞ
ox2

þMðxÞ o
2uðxÞ
oy2

¼ hRHSðxÞWi: ð6Þ
Conventional spatial discretization methods can be applied to reduce this coupled system of PDEs to an alge-
braic linear system. We shall use a standard five-point finite difference scheme on a rectangular grid
Gh ¼ fðjh; khÞgj;k2Z with spacing h in x- and y-directions. The value RHSðjh; khÞ, the random variable
aðjh; kh;xÞ and the corresponding matrix Mðjh; khÞ will be denoted by RHSj;k, aj;k and Mj;k. The discrete
approximation to uðxÞ evaluated at point ðjh; khÞ is denoted as uj;k. Applying the spatial discretization to
the system of deterministic PDEs (6) leads to
ðuj�1;k � 2uj;k þ ujþ1;kÞ þMj;kðuj;k�1 � 2uj;k þ uj;kþ1Þ ¼ h2hRHSj;kWi: ð7Þ

When the equations are collected over all grid points a classical linear system results,
Lhuh ¼ fh: ð8Þ

The dimension of the system equals the number of spatial grid points multiplied by Q. When the unknowns
are ordered pointwise, that is, all unknowns at a particular grid point are grouped together, then Lh is a block
matrix with blocks of size Q� Q. Its block structure is identical to the classical five-point star matrix structure.
When the unknowns are ordered variable-wise, then Lh is a Q� Q block matrix with blocks having the size
and structure of a discretized scalar PDE.

2.4. Iterative solution of the fully discrete system

We consider iterative methods for solving (8). For example, in iteration step mþ 1 of a pointwise Gauss–
Seidel (GS-LEX) scheme the new value uðmþ1Þ

j;k ¼ WTu
ðmþ1Þ
j;k in grid point ðjh; khÞ is determined from,
2ðI þMj;kÞuðmþ1Þ
j;k ¼ ðuðmþ1Þ

j�1;k þ u
ðmÞ
jþ1;kÞ þMj;kðuðmþ1Þ

j;k�1 þ u
ðmÞ
j;kþ1Þ � h2hRHSj;kWi; ð9Þ
assuming that I þMj;k is an invertible matrix. We shall use the previous scheme as a smoother in a two-level
iterative method. A typical two-grid iteration scheme TGðm1; m2Þ, which updates the approximation uh, can be
formulated as follows [14]:
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� pre-smoothing: smooth m1 times uh, i.e., uh  Sm1
h uh

� coarse grid correction:
– calculate residual: rh ¼ fh � Lhuh

– restrict residual: f2h ¼ I2h
h rh

– solve for coarse grid correction: L2he2h ¼ f2h

– correct: uh  uh þ Ih
2he2h

� post-smoothing: smooth m2 times uh, i.e., uh  Sm2
h uh

Next to the fine grid Gh also a coarse grid G2h is used, for example obtained by doubling the grid spacing.
Residuals ðrhÞ and corrections ðe2hÞ are transferred from one grid to another by using restriction ðI2h

h Þ and pro-
longation ðIh

2hÞ operators. By using a recursion the two-level algorithm can be extended towards a true multi-
level method that uses a hierarchy of coarser and coarser grids.

3. A polynomial basis that decouples the stochastic PDE

It has been shown in [8,9] that the use of a certain carefully constructed set of orthogonal polynomials
fWlgl¼1;...;Q leads to a complete decoupling of system (8). Here we suggest an alternative (and easier) derivation
of those polynomials. This decoupling method is of practical importance mainly for low degree polynomials
and a limited number of random variables. Otherwise, the method is computationally too costly. For theoret-
ical purposes, however, a study of this algorithm is interesting as it provides with little effort a set of conver-
gence factor bounds for the more general case.

As before, the Q basis functions are generated as products of univariate polynomials
W0l1;...;lN�
ðn1; . . . ; nN� Þ ¼

YN�
i¼1

wnili
ðniÞ; li 2 f0; . . . ; nig; ð10Þ
i.e., each of the
QN�

i¼1ðni þ 1Þ basis functions consist of N* univariate factors. In the classical Polynomial Chaos
procedure these univariate polynomials constitute a set of orthogonal polynomials of increasing degree. Here,
we consider an alternative set. The univariate polynomials in ni ði ¼ 1; . . . ;NÞ, i.e., in the random variables
generated by the KL-expansion (2), are selected to be exactly of a specified degree ni, and are given by
wnili
ðniÞ ¼ ð�1Þni�liqnili

Y
r 6¼li

ðni � fnirÞ; li ¼ 0; . . . ; ni: ð11Þ
The values fnir, for r ¼ 0; . . . ; ni, are the roots of the orthogonal polynomial uniþ1 of degree ni þ 1, i.e.,
uniþ1ðniÞ ¼ q�niþ1

Yni

r¼0

ðni � fnirÞ:
The polynomial uniþ1 corresponds to a typical univariate factor used in the construction of a classical General-
ized Polynomial Chaos basis. The positive normalization constants qnili

and q�niþ1 are chosen so that hw2
nili
ii ¼ 1

and hu2
niþ1ii ¼ 1. In case of a standard Gaussian random variable ni, the values q�nili

and qnili
are equal to

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðni þ 1Þ!

p
.

For the univariate polynomials in ni with i ¼ N þ 1; . . . ;N �, both this alternative procedure and the usual
Generalized Polynomial Chaos procedure with polynomials of increasing degree can be applied. In both cases
these polynomials will be denoted by wnili

; li ¼ 0; . . . ; ni; i ¼ N þ 1; . . . ;N �. Let the column vector W represent
the (Generalized) Polynomial Chaos basis functions, then we collect the alternative basis functions in a col-
umn vector W0.

The alternative univariate polynomials satisfy some interesting properties.

Property 3.1.

(a) hwnili
wnimi
ii ¼ dlimi ; i ¼ 1; . . . ;N �;

(b) hniwnili
wnimi
ii ¼ fnili

dlimi ; i ¼ 1; . . . ;N :
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Proof. The results for the case li 6¼ mi follow immediately from (11) by taking into account that uniþ1 is
orthogonal to every polynomial in ni of degree at most ni. For example, for property (b),
hniwnili
wnimi
i ¼ ð�1Þliþmi

qnili
qnimi

q�niþ1

uniþ1 ni

Y
r 6¼li ;mi

ðni � fnirÞ
 !* +

¼ 0:
For li ¼ mi, property (a) follows from the normalization condition. The proof for li ¼ mi of property (b) is
based on the following identities:
hniw
2
nili
i � fnili

hw2
nili
i ¼ hðni � fnili

Þw2
nili
i ¼
ð�1Þni�liqnili

q�niþ1

huniþ1wnili
i ¼ 0: �
We can derive some analogous properties for the new multivariate polynomials (10), under the assumption
that fnigi¼1;...;N� are independent random variables.

Property 3.2.

(a) hW0l1;...;lN�
W0m1;...;mN�

i ¼ dðl1;...;lN� Þðm1;...;mN� Þ;

(b) hniW
0
l1;...;lN�

W0m1;...;mN�
i ¼ fnili

dðl1;...;lN� Þðm1;...;mN� Þ; 8i 2 f1; . . . ;Ng:

These properties will allow us to discuss the performance of certain iterative methods in terms of the roots
ffnili
gli¼0;...;ni ;i¼1;...;N (see Section 4).

The random basis functions (10) can be used to decouple the model problem (1). As before, we replace the
random field a by its truncated Karhunen–Loève expansion, and we write the approximate solution as a linear
combination of the random basis functions,
uðx;xÞ ¼
Xn1

l1¼0

� � �
XnN�

lN�¼0

u0l1;...;lN�
ðxÞW0l1;...;lN�

ðn1; . . . ; nN� Þ;
where the deterministic coefficient functions u0l1;...;lN�
ðxÞ are to be determined. Using the properties derived in

this section, it can easily be checked that the matrix MðxÞ from Eq. (6) becomes a diagonal matrix. More di-
rectly, the result can be derived from an orthogonalization of the residual of the model problem w.r.t. any of
the basis functions W0m1;...;mN�

. For example, orthogonality w.r.t. n leads to an equation of the form
o
2u0m1;...;mN�

ox2
þ a0ðxÞ þ

XN

i¼1

aiðxÞfnimi

 !
o

2u0m1;...;mN�

oy2
¼ hRHSðxÞW0m1;...;mN�

i: ð12Þ
This is a deterministic PDE in a single unknown variable u0m1;...;mN�
ðxÞ. A similar PDE is obtained for every

ðm1; . . . ;mN� Þ 2 f0; 1; . . . ; n1g � � � � � f0; 1; . . . ; nN�g. As such the stochastic problem is decomposed intoQN�

i¼1ðni þ 1Þ deterministic PDEs. Note that if the number of Karhunen–Loève terms increases or if the degrees
ni are increased, the number of deterministic PDEs rapidly becomes prohibitively large for practical purposes.

The roots ffnimi
gmi¼0;...;ni

of the polynomials uniþ1 play an important role in this decomposition. They deter-
mine the

QN
i¼1ðni þ 1Þ realizations of the random field a for which deterministic versions of the model problem

have to be solved. For each of those realizations the PDE must be solved for
QN�

i¼Nþ1ðni þ 1Þ different right
hand sides.

4. Local Fourier mode analysis

Fourier mode analysis is a powerful tool to analyze multigrid methods quantitatively [12,19]. It is fre-
quently used to optimize the different algorithmic components for a specific problem. It was originally devel-
oped for linear discrete operators, but it can also be applied to more general discrete operators by linearizing
the operator locally and by ‘freezing’ its coefficients to a constant value. In this section we apply the LFA to
study multigrid for PDEs with random coefficients. In Section 4.1 we analyze the properties of a number of
one-level iterative methods that are frequently used as smoothers inside a multigrid algorithm. In Section 4.2
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the two-grid algorithm is studied. There, we consider the case where the classical (Generalized) Polynomial
Chaos functions are used for discretization. In Section 4.3 we treat the special case of basis functions that
decouple the stochastic problem into a set of deterministic ones, as explained in Section 3.

4.1. Analysis of one-level iterative methods

We shall work out the details of the local Fourier analysis for the GS-LEX method (9). An infinite grid is
assumed to eliminate the effect of boundary conditions. We define the errors in the coefficient vectors as
e
ðmÞ
j;k ¼ uj;k � u

ðmÞ
j;k :
At every grid point the error is a Q-vector. From 7 and 9 it follows that
2ðI þMj;kÞeðmþ1Þ
j;k � e

ðmþ1Þ
j�1;k �Mj;ke

ðmþ1Þ
j;k�1 ¼ e

ðmÞ
jþ1;k þMj;ke

ðmÞ
j;kþ1: ð13Þ
In the case of a variable coefficients problem, we shall perform the LFA to the problem by freezing the random
field a to its value aj;k in the considered grid point ðjh; khÞ [20]. In the model problem (1), this corresponds to
the replacement of the random field aðx;xÞ by a random variable a(x). As such, Mj;k can be considered to be a
fixed known matrix, which will be denoted as M. It is a real and symmetric matrix, but not necessarily posi-
tive. Theoretically, this might prevent GS-LEX to be well-defined or to converge. In practical situations how-
ever, this will not turn out to be an issue (see Section 5).

We shall decompose the error into a sum of exponential Fourier modes of the form
ej;kðh; zÞ ¼ expðıðjhx þ khyÞÞz; ð14Þ

where ı represents the imaginary unit and with h :¼ ðhx; hyÞ 2 ½�p; pÞ2. The Q-vector z ¼ ½A1;A2; . . . ;AQ�T con-
tains the amplitudes of the Fourier mode in the random functions fWlgl¼1;...;Q. Application of (13) to mode
ej;kðh; zðmÞÞ, e.g., one of the components of the error at the mth iteration, generates mode ej;kðh; zðmþ1ÞÞ with
ðð2� expð�ıhxÞÞI þ ð2� expð�ıhyÞÞMÞzðmþ1Þ ¼ ðexpðıhxÞI þ expðıhyÞMÞzðmÞ:

The convergence of the above iteration depends on the spectrum of M, denoted as rðMÞ, i.e., on the random
structure of the model problem. Let zq be an eigenvector of M with corresponding eigenvalue kq, and set
zðmÞ ¼ zq. Then, we immediately find that zðmþ1Þ ¼ bSðh; kqÞzðmÞ with
bSðh; kqÞ ¼
expðıhxÞ þ expðıhyÞkq

ð2� expð�ıhxÞÞ þ ð2� expð�ıhyÞÞkq
: ð15Þ
We can decompose the iteration error into a sum of independent components of the form expðıðjhx þ khyÞÞzq,
which are eigenvectors of the GS-LEX iteration operator, with bSðh; kqÞ the corresponding eigenvalues. The
distribution of the eigenvalues of the GS-LEX iteration operator for several values of kq is shown in
Fig. 1a–c. The eigenvalues lie inside the unit circle for every kq > 0 and every h 2 ½�p; pÞ2.

In Fig. 1d and e, we compare the eigenvalues of a stochastic problem, with a related deterministic problem,
namely the problem with the mean of a(x) as deterministic coefficient. We observe that each eigenvalue in the
deterministic case is split into Q eigenvalues in the stochastic case. This can be explained intuitively as follows.
Consider Lxx and Lyy , the spatial discretizations of the operators o2

ox2 and o2

oy2. We can rewrite the GS-LEX iter-
ation operator S in tensor product notation as
S ¼ ðIQ � Lþxx þM� LþyyÞ
�1ðIQ � L�xx þM� L�yyÞ; ð16Þ
with the matrix splittings Lxx ¼ Lþxx � L�xx, Lyy ¼ Lþyy � L�yy and Lþxx, Lþyy the lower triangular parts of Lxx and Lyy ,
respectively. Based on the eigenvalue-eigenvector decomposition of the matrix M, i.e., M ¼ V KV T, we can
apply a similarity transformation to (16) and obtain
rðSÞ ¼ rðV T � Ih � S � V � IhÞ ¼ rðIQ � Lþxx þ K� LþyyÞ
�1ðIQ � L�xx þ K� L�yyÞ

¼
[Q
q¼1

rðLþxx þ kqLþyyÞ
�1ðL�xx þ kqL�yyÞ:
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In as far as the eigenvalues kq of M approximate the mean value a0 of the random variable a(x), each eigen-
value of the deterministic problem will be approximated by Q eigenvalues of the stochastic problem.

Knowledge of the eigenvalues of an iteration operator allows to calculate two important quantities: the
spectral radius q, which determines the asymptotic convergence rate, and the smoothing factor s. The latter
is important in a multigrid context, as it measures the reduction rate of the so-called oscillatory Fourier
modes, i.e., the modes that are visible only on the fine mesh. These quantities for the frozen coefficient problem
are defined as

– –

– ––
– –– ––

– –
1 . (p e de 3 -Þ , sJ o u
q ¼ max
kq2rðMÞ

max
h2½�p;pÞ2

jbSðh; kqÞj and s ¼ max
kq2rðMÞ

max
h2½�p;pÞ2n �p

2;
p
2Þ

2
� jbSðh; kqÞj: ð17Þ
In case of a variable coefficient problem, with sufficiently smooth coefficients, the above measure becomes
x-dependent. In such a case it is customary to look for the worst case value, e.g., for the convergence factor
�q ¼ max
x¼ðjh;khÞ2D

max
kq2rðMðxÞÞ

max
h2½�p;pÞ2

jbSðh; kqÞj: ð18Þ
Analytical expressions for these quantities can be deduced from (15). The LFA spectral radius is given by
q ¼ 1 since the maximum in (17) is reached for h ¼ ð0; 0Þ. This implies that GS-LEX does not converge at
infinite grids. For practical situations however at finite grids, GS-LEX does converge. In such situations,
the definitions in Eq. (17) must be modified since the eigenvalues and the eigenfunctions of the GS-LEX oper-
ator no longer correspond to (15) and (14). Considering Dirichlet boundary conditions, reasonable estimates
for the spectral radius and the smoothing factor can be obtained from the GS-LEX eigenvalues on an infinite
– – – ––0.5

– –
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grid (15) by sampling h values from a finite grid and excluding the zero frequencies (hx ¼ 0 or hy ¼ 0) from the
analysis [14]. Based on these heuristics, the definition of the spectral radius (17) applies to the finite domain,
h 2 HD :¼ fhjh ¼ ðhx; hyÞ with hd ¼ pmd=nd ; 1 6 md 6 nd � 1; nd ¼ 1=hðd ¼ x; yÞg. The largest eigenvalue in

modulus then occurs at ðhx; hyÞ ¼ ðph; phÞ with bSððph; phÞ; kqÞ ¼ expðıphÞ
2�expð�ıphÞ; and thus the spectral radius is given

by
Table
Eigenv
Gauss

Point

Point

x-line

x-Jaco
q ¼ 1� p2h2 þ Oðh4Þ: ð19Þ

Since this expression is independent of kq, we also have
�q ¼ 1� p2h2 þ Oðh4Þ: ð20Þ

The smoothing factor and the spectral radius of GS-LEX are shown as a function of kq in Fig. 4. For a grid
with different grid spacing in the two directions, (hx,hy), the eigenvalues of the GS-LEX iteration operator
become
bS hx;hy ðh; kqÞ ¼
h2

y expðıhxÞ þ h2
x expðıhyÞkq

h2
yð2� expð�ıhxÞÞ þ h2

xð2� expð�ıhyÞÞkq

:

In this case, the modulus of the largest eigenvalue does depend on kq. The spectral radius is given by
q ¼ 1� p2 1þkq

h2
yþh2

xkq
h2

xh2
y þ Oðh4

xh4
yÞ.

The LFA can also be performed for other classical iterative methods. In Table 1, we consider the red–black
version of the point Gauss–Seidel method, the x-line lexicographic Gauss–Seidel scheme, and the pointwise x-
Jacobi scheme, also known as damped or weighted Jacobi. The table shows for each method the formula for
the eigenvalues as a function of h and kq, and the smoothing factor as a function of kq. The analysis of red–
black Gauss–Seidel is somewhat more elaborate than the analysis of lexicographic Gauss–Seidel since the red–
black updating scheme results in an intermixing of the high frequency and low frequency Fourier modes. This
necessitates a generalized definition of the smoothing factor in which the smoothing factor depends on the
number of fine-grid relaxation sweeps, see [19,21]. In Table 1, the results for a single smoothing step per cycle
are given. The analysis of red–black Gauss–Seidel can straightforwardly be extended to the analysis of red–
black successive overrelaxation (SOR) iterations using the results in [22, Th. 2.1]. If sGS�RB represents the
smoothing factor of red–black Gauss–Seidel, then a good approximation to the optimal SOR damping param-
eter and the corresponding smoothing factor are given by xSOR;opt and sSOR;opt:
1
alues and smoothing factor for iterative methods applied to the (frozen) discrete differential operator (7) (GS-LEX: lexicographic

–Seidel, GS-RB: pointwise red–black Gauss–Seidel, x-line GS-LEX: line GS-LEX in the x-direction and X-Jacobi: weighted Jacobi)

Eigenvalues Smoothing factor

GS-LEX expðihxÞ þ expðihyÞkq

ð2� expð�ihxÞÞ þ ð2� expð�ihyÞÞkq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bðk2

q þ 1Þ þ 4k2
q

ffiffiffi
b
p

bð5k2
q þ 8kq þ 5Þ � 4

ffiffiffi
b

p
Þ

s
if 0 < kq 6 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðk2

q þ 1Þ þ 4kq
ffiffiffi
c
p

cð5k2
q þ 8kq þ 5Þ � 4k3

q
ffiffiffi
c
p

s
if kq > 1

With b ¼ 5k2
q � 2kq þ 1 and c ¼ k2

q � 2kq þ 5

GS-RB 0 or
cosðhxÞ þ cosðhyÞkq

1þ kq

� �2
1

ð1þ kqÞ2
if 0 < kq 6 1

k2
q

ð1þ kqÞ2
if kq > 1

8>><>>:
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expðihyÞkq

ð2ð1� cosðhxÞÞÞ þ ð2� expð�ihyÞÞkq
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5
p
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1þ
ffiffiffi
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p

2
kq

2þ kq
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1þ
ffiffiffi
5
p
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bi 1� xþ x
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1þ kq

2þ kq
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if 0 < kq 6 1
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Fig. 2. Smoothing factors for
xSOR;opt ¼
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sGS�RB

p and sSOR;opt ¼
1þ sGS�RB

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sGS�RB

p� �2
:

The smoothing factor for x-Jacobi is based on an optimal value for the parameter x that minimizes the
smoothing factor. Some calculations show that the optimal value of x is the following function of kq,
xopt;kq ¼
2þ 2kq

2þ 3kq
if 0 < kq 6 1 and xopt;kq ¼

2þ 2kq

3þ 2kq
if kq > 1:
As illustrated in Table 1, for kq ¼ 1, the smoothing factors coincide with the well-known smoothing factors for
the central discretization of the two-dimensional Laplacian. A summary of the results is presented in Fig. 2,
that shows the smoothing properties of the discussed iterative methods as a function of kq.

4.2. Local Fourier analysis for the general approach

Application of the (frozen) discrete differential operator characterized by the left hand side of Eq. (7) to a
vector-valued Fourier mode of the form (14) leads to
Lhej;kðh; zÞ ¼
1

h2
ðej�1;kðh; zÞ � 2ej;kðh; zÞ þ ejþ1;kðh; zÞÞ þ

1

h2
Mðej;k�1ðh; zÞ � 2ej;kðh; zÞ þ ej;kþ1ðh; zÞÞ

¼ � 4

h2
expðıðjhx þ khyÞÞ sin2 hx

2

� �
I þ sin2 hy

2

� �
M

� �
z:
If z is selected to be one of the eigenvectors zq of M with corresponding eigenvalue kq, the last equality sim-
plifies to
Lhej;kðh; zqÞ ¼ bLhðh; kqÞej;kðh; zqÞ

with
bLhðh; kqÞ ¼ �
4

h2
sin2 hx

2

� �
þ sin2 hy

2

� �
kq

� �
:

Hence, the Fourier mode ej;kðh; zqÞ is an eigenfunction of the (frozen) discrete differential operator. It is also an
eigenfunction for the operator L2h on grid G2h with eigenvalue
eL2hðh; kqÞ ¼ �
1

h2
ðsin2ðhxÞ þ sin2ðhyÞkqÞ:
0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterative methods applied to the (frozen) discrete di�erential operator(7)(GS-LEX: lexicographic Gauss…Seidel, GS-RB: pointwise red…black Gauss…Seidel, SOR-RB: pointwise red…black successive overrelaxation,x-line GS-LEX: line GS-LEXin thex-direction andx-Jacobi: weighted Jacobi).B. Seynaeve et al. / Journal of Computational Physics 224 (2007) 132…149141



142 B. Seynaeve et al. / Journal of Computational Physics 224 (2007) 132–149
The Fourier mode ej;kðh; zqÞ is not an eigenfunction of the restriction and prolongation operator. In order to
analyze those operators, one divides the Fourier space into four-dimensional subspaces of harmonics,
Eðh; zqÞ :¼ span½eðh1; zqÞ eðh2; zqÞ eðh3; zqÞ eðh4; zqÞ�, for a given ðhx; hyÞ 2 ½� p

2
; p

2
Þ2 with
Fig. 3
ðhx; hyÞ
h1 ¼ ðhx; hyÞ; h2 ¼ ðhx; hy � signðhyÞpÞ;
h3 ¼ ðhx � signðhxÞp; hyÞ; h4 ¼ ðhx � signðhxÞp; hy � signðhyÞpÞ:
These spaces of harmonics are invariant under the fine and coarse grid discrete differential operators, and un-
der certain smoothing operators. The action of such an operator on an element of such a space can be de-
scribed by a four by four matrix, the so-called symbol of that operator. For example, the symbol of the
pointwise lexicographic Gauss–Seidel method, denoted as eSðh; kqÞ, is given by
eSðh; kqÞ ¼ diagðbSðh1; kqÞ; bSðh2; kqÞ; bSðh3; kqÞ; bSðh4; kqÞÞ;

with bSðh; kqÞ defined by (15). The Fourier symbol of Lh becomes
eLhðh; kqÞ ¼ diagðbLhðh1; kqÞ; bLhðh2; kqÞ; bLhðh3; kqÞ; bLhðh4; kqÞÞ:

The prolongation operator maps the mode ej;kð2h; zqÞ on G2h onto the space Eðh; zqÞ [19]. It is characterized by
the symbol eI h

2hðhÞ, which for bilinear interpolation is given by
eI h
2hðhÞ ¼

1

4

ð1þ cosðhxÞÞð1þ cosðhyÞÞ
ð1þ cosðhxÞÞð1� cosðhyÞÞ
ð1� cosðhxÞÞð1þ cosðhyÞÞ
ð1� cosðhxÞÞð1� cosðhyÞÞ

26664
37775:
Using standard coarsening, the restriction maps the space Eðh; zqÞ onto the single mode eðh1; zqÞ. The corre-
sponding Fourier representation satisfies eI 2h

h ðhÞ ¼ ðeI h
2hðhÞÞ

T.
To conclude, the action of this two-grid operator, corresponding to the frozen differential operator on the

space Eðh; zqÞ, is characterized by the following symbol:
fTGðh; kqÞ ¼ ðeSðh; kqÞÞm2ðeI � eI h
2hðhÞðeL2hð2h; kqÞÞ�1eI 2h

h ðhÞeLhðh; kqÞÞðeSðh; kqÞÞm1 ;
where m1; m2 are the number of pre-smoothing, respectively post-smoothing steps and eI corresponds to a (4 · 4)
identity matrix. The asymptotic convergence factor of the two-grid algorithm, applied to the differential oper-
ator with frozen coefficients at a fixed grid point ðjh; khÞ, is given by,
qðTGÞ ¼ max
kq2rðMÞ

max
h2½�p

2;
p
2Þ

2
qðfTGðh; kqÞÞ:
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. Eigenvalues of the two-grid iteration matrix for a deterministic and a stochastic problem (400 equidistant samples of
2 ½� p

2
; p

2
Þ2). (a) a ¼ 1:0 (deterministic). (b) a 	 Nð1:0; ð0:1Þ2Þ, second-order PC-basis.
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Fig. 3 compares the eigenvalues of the two-grid iteration matrix for a stochastic problem and a related
deterministic problem. Similar conclusions hold as for Fig. 1 in Section 4.1. Each of the eigenvalues of the
deterministic problem is again split into Q eigenvalues for the stochastic problem.

In Fig. 4, the convergence properties of one-level and two-level iterative methods are illustrated as a func-
tion of kq. The smoothing properties of the one-level method GS-LEX and the convergence factors of the
multi-level methods show a strong dependence on kq. Especially small values of kq result in a very poor mul-
tigrid performance. These small values occur when a high order (Generalized) Polynomial Chaos basis is used
or when the variance of the random field increases. Also other random field statistics, such as the correlation
length, influence the spectrum of M, but less severe than the influence of the variance. Increasing the number
of Karhunen–Loève terms has only a small influence on the range of eigenvalues kq, asymptotically this influ-
ence disappears. The convergence properties of the iterative methods are illustrated by numerical experiments
in Section 5.

When the two-grid operator contains spatially varying coefficients, the asymptotic convergence factor of
the two-grid operator can be approximated by the maximum of the convergence factors qðTGj;kÞ for all grid
points ðjh; khÞ [20],
qðTGÞ ¼ max
x¼ðjh;khÞ2D

max
kq2rðMðxÞÞ

max
h2½�p

2;
p
2Þ

2
qðfTGðh; kqÞÞ; ð21Þ
if the variation of the coefficients is sufficiently smooth [23, Section 8.2.2].

4.3. Some comments on the decoupling approach

The decoupling approach results in a number of PDEs of the form (12), each with a deterministic coefficient
km1;...;mN ðxÞ ¼ a0ðxÞ þ
XN

i¼1

aiðxÞfnimi
: ð22Þ
These coefficients can be collected into a diagonal matrix KðxÞ. The set of decoupled PDEs can then be written
as a system of PDEs of the form (6), with MðxÞ replaced by KðxÞ. For analysis purposes it may again be
required to freeze the coefficient to a local value. We denote this frozen coefficient by km1;...;mN , and the
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Fig. 4. Convergence factors for a one-level iterative method and for a two-grid cycle with GS-LEX smoothing.
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corresponding diagonal matrix by K. Obviously, all of the results of Section 4.2 continue to hold for the
decoupling approach, when MðxÞ, M, and kq are replaced by KðxÞ, K, and km1;...;mN respectively.

Now we would like to point out two relations between the general and the decoupled approach. First, we
consider the use of a Generalized Polynomial Chaos set of basis functions (3) that contains all possible prod-
ucts of the univariate polynomials. This set of functions W spans the same vector space as the alternative basis
W0 from Section 3 and it is also orthonormal. Hence, W ¼ ZW0 must hold for some orthogonal matrix Z. With
that matrix the eigenvalue decomposition of MðxÞ can be computed as
MðxÞ ¼ haKLðx;xÞZW0W0TZTi ¼ ZhaKLðx;xÞW0W0TiZT ¼ ZKðxÞZT:
Thus the eigenvalues of MðxÞ are the diagonal entries km1;...;mN ðxÞ of KðxÞ. So, the convergence rate of the mul-
tigrid method applied to the coupled system of PDEs (6) constructed using this particular Generalized Poly-
nomial Chaos basis, is equal to the worst case of the convergence rates of multigrid applied to the decoupled
PDEs (12) separately.

Next, we consider the case when the set of basis functions (3) does not contain all possible products of the
univariate polynomials. As mentioned in Section 2.2, this situation arises when W is constructed by specifying
the maximum degree of the multivariate polynomials. In this case, a diagonalization of MðxÞ is in general not
possible. There is no orthogonal transformation that diagonalizes the different matrices hniWWTi appearing in
the definition (5) of MðxÞ simultaneously. However, it is possible to find upper and lower bounds for the
eigenvalues of MðxÞ. Therefore, the set W of polynomials is completed to the minimal set that contains all
possible products of the required univariate polynomials, denoted by W. Then, MðxÞ ¼ haKLðx;xÞWWTi is
a submatrix of MðxÞ ¼ haKLðx;xÞWWTi obtained by omitting all but Q rows and columns. As a result the
range of eigenvalues ½kminðxÞ; kmaxðxÞ� of MðxÞ must be contained in the range of eigenvalues
½�kminðxÞ; �kmaxðxÞ� of MðxÞ.

Hence, analysis of the convergence of the multigrid method for the decoupling approach using polynomials
of degree ni in ni, provides us immediately with upper bounds for the multigrid convergence of the general
approach, using any set of polynomials with degrees in ni lower than or equal to ni. The analysis of the decou-
pling approach is a straightforward exercise, once the zeros fnimi

have been computed.

5. Numerical results

We present some test results that illustrate the convergence behavior and the sharpness of the Fourier mode
analysis for the single-grid and multigrid methods discussed in the earlier sections. As a test case we consider
model problem (1) with zero forcing term on an unit square domain with homogeneous Dirichlet boundary
conditions. In a first test problem the random field aðx;xÞ is actually a Gaussian random variable avarðxÞ with
mean a0 and variance r2. In the second test problem we selected aðx;xÞ to be a Gaussian field afieldðx;xÞ with a
specified mean a0ðxÞ and represented by a truncated Karhunen–Loève expansion based on the exponentially
decaying covariance function,
Cðx; x0Þ ¼ r2 exp � jjx� x0jj1
Lc

� �
: ð23Þ
The covariance function is parameterized by the variance r2 and by the correlation length Lc. Note that the
Karhunen–Loève expansion (2) is known analytically for (23), see [5,18]. For the second test problem, the dif-
ferential operator contains spatially varying coefficients. By selecting a mean value different from one, the ef-
fect of anisotropy can be investigated.

5.1. Single grid methods

We first consider pointwise GS-LEX, pointwise x-Jacobi, pointwise GS-RB and x-line GS-LEX. Tables 2
and 3 display the convergence and smoothing factors obtained by Fourier analysis and the convergence fac-
tors obtained by numerical experiment for the first (random variable) problem and for the second (random
field) problem. The results are given for an isotropic and an anisotropic problem. The theoretical convergence
factors for the random variable problem are computed by using formula (19). For the random field case the



Table 2
Theoretical convergence factor (qtheo), smoothing factor (stheo), and numerically observed convergence factor (q) for the one-level iterative
solution of the model problem with aðx;xÞ a random variable avar (h ¼ 2�4, second-order PC-basis)

avar : a0 ¼ 1;r ¼ 0:25 avar : a0 ¼ 0:2; r ¼ 0:05

qtheo stheo q qtheo stheo q

x-Jacobi 0.988 0.600 0.985 0.983 0.800 0.982
Point GS-LEX 0.961 0.551 0.962 0.961 0.817 0.962
Point GS-RB 0.961 0.407 0.962 0.961 0.807 0.962
x-line GS-LEX 0.935 0.447 0.937 0.827 0.447 0.845

Table 3
Theoretical convergence factors (qtheo), smoothing factor (stheo), and numerically observed convergence factors (q) for the one-level
iterative solution of the model problem (h ¼ 2�4, second-order PC-basis, 4-term Karhunen–Loève expansion, Lc ¼ 1)

afield : a0ðxÞ ¼ 1;r ¼ 0:25 afield : a0ðxÞ ¼ 0:2;r ¼ 0:05

qtheo stheo q qtheo stheo q

x-Jacobi 0.986 0.684 0.984 0.982 0.898 0.982
Point GS-LEX 0.961 0.544 0.962 0.961 0.808 0.962
Point GS-RB 0.961 0.390 0.962 0.961 0.797 0.962
x-line GS-LEX 0.933 0.447 0.935 0.821 0.447 0.838
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estimate (20) is used. For the results in Table 2, the Polynomial Chaos basis consists of three basis functions,
for the results in Table 3, of 15 basis functions.

Although the theoretical convergence factors hold only under the LFA assumptions of an infinite grid, we
observe a good correspondence between the numerical and theoretical values. The results illustrate the inde-
pendence of the asymptotic convergence factors of the pointwise iterative methods on the distribution of the
random parameter a. As in the deterministic case, the line Gauss–Seidel method converges faster than the
pointwise schemes for the anisotropic problem. The smoothing factors, which are indicative of the obtainable
multigrid convergence factor, show a clear dependence on the statistics of the random parameter in case of the
pointwise iterative methods. Also here, the advantage of using a line-relaxation method for the anisotropic
problem is obvious.

Next, we investigate the convergence properties of pointwise GS-LEX more thoroughly, see the numerical
results in Table 4. To illustrate the 1� Oðh2Þ behavior of the convergence factors, the table displays the con-
vergence factors subtracted from unity. In the first block of rows the convergence is presented as a function of
the mesh spacing h for the model problem with random field. The total number of discrete unknowns can be
computed as the product of the number of internal grid points ð1=h� 1Þ2 multiplied by the number of random
Table 4
Theoretical convergence factors ðqtheoÞ and numerically observed convergence factors (q) for the pointwise lexicographic Gauss–Seidel
method for the model problem with random field: difference from 1 is given

Grid spacing h ¼ 2�3 h ¼ 2�4 h ¼ 2�5 h ¼ 2�6 h ¼ 2�7

1� qtheo 1:542 � 10�1 3:855 � 10�2 9:638 � 10�3 2:410 � 10�3 6:024 � 10�4

1� q 1:465 � 10�1 3:806 � 10�2 9:607 � 10�3 2:408 � 10�3 6:023 � 10�4

KL-terms N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 5
1� qtheo ¼ 9:607 � 10�3; 1� q 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3

Order PC-basis P ¼ 1 P ¼ 2 P ¼ 3 P ¼ 4 P ¼ 5
1� qtheo ¼ 9:607 � 10�3; 1� q 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3

Variance r2 r ¼ 0:1 r ¼ 0:2 r ¼ 0:4 r ¼ 0:6 r ¼ 0:7
1� qtheo ¼ 9:607 � 10�3; 1� q 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3

Correlation length Lc ¼ 0:25 Lc ¼ 0:5 Lc ¼ 1 Lc ¼ 2:5 Lc ¼ 5
1� qtheo ¼ 9:607 � 10�3; 1� q 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3 9:607 � 10�3

Unless specified differently, the following default configuration is used: grid spacing h ¼ 2�5, second-order PC-basis, 4-term KL-expansion
of afield with r ¼ 0:2 and Lc ¼ 1.
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basis functions, Q. For example, the result for the h ¼ 2�7 case corresponds to a system constructed with sec-
ond order polynomials in 4 random variables ni, this leads to Q ¼ 15 and a total of 241 935 unknowns. When
the order P of the random polynomials is varied (third block row of Table 4), the number of random basis
functions Q increases as follows: Q ¼ 5; 15; 35; 70; 126 corresponding to P ¼ 1; 2; 3; 4; 5, respectively. The the-
ory from Section 4.1 states that the asymptotic convergence of pointwise GS-LEX is independent of the eigen-
structure of M when equal grid spacing is used in the x- and y-dimension. The numerical results confirm the
independence of the convergence rate on the order of the Polynomial Chaos basis, on the number of random
dimensions and on the field statistics, the variance and correlation length of the random field. The convergence
rate only depends on the grid spacing.

5.2. Multigrid methods

First, we shall verify the convergence analysis of the two-grid method. Some test results are given in Table 5.
Two types of theoretical convergence factors are shown. The first, qtheo, is based on Eq. (21). The second, �qtheo, is
an upper bound for qtheo based on the connection between the general and the decoupling approach in Section 4.3
and calculated by using the roots fnili. Also numerically observed results are presented.

For small problems, the upper bounds are quite sharp. For larger systems the quality of the upper bounds
deteriorates, especially for a high Polynomial Chaos order or a larger number of random dimensions. This is
due to the fact that the completed basis W contains many more basis functions than W, when the Polynomial
Chaos order or the number of random dimensions is sufficiently high. The eigenvalue ranges for the coefficient
matrices, M and M, are given in Table 6.

The convergence analysis in Section 4.2 states that the multigrid convergence is independent of the grid
spacing, but not of the eigenvalue distribution of M. The mesh-independent convergence is illustrated by
the first block row of Table 5. As for the kq-dependence, we observe that the range of eigenvalues kq is in par-
ticular sensitive to the order of the random polynomial basis and to the variance of the random field. This is
illustrated in Table 6. It is to a lesser extent dependent on the correlation length. The results for the various
correlation lengths in the last block row of Tables 5 and 6 are based on a 20-term KL-expansion instead of on
a 4-term expansion since decreasing the correlation length broadens the KL-eigenvalue spectrum and thus
requires more KL-terms to represent the random field. Asymptotically the range of eigenvalues kq becomes
Table 5
Numerical (q) and theoretical convergence factors (�qtheo and qtheo) for the two-grid cycle TGð2; 1Þ with GS-LEX smoothing

Grid spacing h ¼ 2�4 h ¼ 2�5 h ¼ 2�6 h ¼ 2�7 h ¼ 2�8

qtheo ¼ 0:123; �qtheo ¼ 0:164
q 0.105 0.111 0.112 0.113 0.113

KL-terms N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 5
qtheo 0.122 0.122 0.123 0.123 0.123
�qtheo 0.122 0.128 0.138 0.164 0.198
q 0.113 0.113 0.113 0.113 0.113

Order PC-basis P ¼ 1 P ¼ 2 P ¼ 3 P ¼ 4 P ¼ 5
qtheo 0.120 0.123 0.129 0.140 0.183
�qtheo 0.123 0.164 0.339 0.765 >1
q 0.113 0.113 0.117 0.151 0.187

Variance r2 r ¼ 0:05 r ¼ 0:1 r ¼ 0:2 r ¼ 0:3 r ¼ 0:4
qtheo 0.119 0.119 0.123 0.133 0.200
�qtheo 0.119 0.122 0.164 0.496 >1
q 0.112 0.112 0.113 0.135 0.202

Correlation length Lc ¼ 0:5 Lc ¼ 0:75 Lc ¼ 1 Lc ¼ 2:5 Lc ¼ 5
qtheo 0.120 0.120 0.120 0.120 0.120
�qtheo 0.250 0.229 0.224 0.161 0.134
q 0.112 0.112 0.112 0.112 0.112

Unless specified differently, the following configuration is used: h ¼ 2�7, second-order PC-basis, 4-term KL-expansion of afield with r ¼ 0:2
and Lc ¼ 1. The tests on the effect of the correlation length are based on a 20-term KL-expansion and a first-order PC-basis.



Table 6
Eigenvalue ranges for the coefficient matrices MðxÞ, ½kmin; kmax�, and MðxÞ, ½�kmin; �kmax�
KL-terms N ¼ 1 N ¼ 2 N ¼ 3 N ¼ 4 N ¼ 5
½kmin; kmax� [0.706, 1.294] [0.694, 1.306] [0.687, 1.313] [0.682, 1.318] [0.677,1.323]
½�kmin; �kmax� [0.706, 1.294] [0.585, 1.415] [0.489, 1.511] [0.422, 1.578] [0.366, 1.634]

Order PC-basis P ¼ 1 P ¼ 2 P ¼ 3 P ¼ 4 P ¼ 5
½kmin; kmax� [0.816, 1.184] [0.682, 1.318] [0.571, 1.429] [0.475, 1.525] [0.389, 1.611]
½�kmin; �kmax� [0.666, 1.334] [0.422, 1.578] [0.221, 1.779] [0.047, 1.953] [�0.109, 2.109]

Variance r2 r ¼ 0:05 r ¼ 0:1 r ¼ 0:2 r ¼ 0:3 r ¼ 0:4
½kmin; kmax� [0.920, 1.080] [0.841, 1.159] [0.682, 1.318] [0.522, 1.478] [0.363, 1.637]
½�kmin; �kmax� [0.856, 1.144] [0.711, 1.289] [0.422, 1.578] [0.133, 1.867] [�1.558, 2.156]

Correlation length Lc ¼ 0:5 Lc ¼ 0:75 Lc ¼ 1 Lc ¼ 2:5 Lc ¼ 5
½kmin; kmax� [0.814, 1.186] [0.809, 1.191] [0.806, 1.194] [0.802, 1.198] [0.801, 1.199]
½�kmin; �kmax� [0.301, 1.699] [0.325, 1.676] [0.331, 1.669] [0.428, 1.572] [0.516, 1.484]

Unless specified differently, the following configuration is used: second-order PC-basis, 4-term KL-expansion of afield with r ¼ 0:2 and
Lc ¼ 1. The tests on the effect of the correlation length are based on a 20-term KL-expansion and a first-order PC-basis.
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independent of the included number of Karhunen–Loève terms. This explains the observed independence of
the convergence factors on the number of KL-terms.

As such, our LFA explains some features observed in [10]: the convergence properties usually deteriorate as
the variance of the random field increases, but only decrease slightly as the correlation length is decreased; the
multigrid performance usually drops as the order of the Polynomial Chaos increases; the multigrid conver-
gence rate is independent of the number of stochastic dimensions.

Fig. 5 illustrates the performance of the true multi-grid method with a pointwise smoother (lexicographic
and red–black Gauss–Seidel, red–black successive overrelaxation), and with an x-line Gauss–Seidel smoother,
for an isotropic and an anisotropic problem. As in the deterministic PDE case line relaxation methods can deal
effectively with (certain types of) anisotropy when standard coarsening is used. Further, a red–black SOR
method with suitable damping factor turns out to be an efficient smoother both for isotropic and anisotropic
problems. This confirms with the behavior of the SOR smoothing factor as shown in Fig. 2. The practical mul-
tigrid convergence behavior is demonstrated in Table 7 with some numerical convergence factors for different
types of multigrid cycles. The problem setup results in a linear system with about one million unknowns
ðh ¼ 2�8;Q ¼ 15). The multigrid convergence rate of the W-cycles is as good as the two-grid performance.
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Fig. 5. Residual norms for a V(2,1) multigrid cycle with pointwise lexicographic Gauss–Seidel (GS-LEX), pointwise red–black Gauss–
Seidel (GS-RB), lexicographic x-line Gauss–Seidel (x-line GS-LEX) or pointwise red–black successive overrelaxation (SOR-RB)
smoothing (h ¼ 2�4, second-order PC-basis, 4-term Karhunen-Loève expansion of afield with Lc ¼ 1). (a) afield : a0ðxÞ ¼ 1;r ¼ 0:25.
(b) afield : a0ðxÞ ¼ 0:2;r ¼ 0:05.



Table 7
Numerically observed convergence factors for the multigrid solution of the model problem

TG-cycle V-cycle W-cycle

Smoothing steps (1,1) (2,1) (2,2) (1,1) (2,1) (2,2) (1,1) (2,1) (2,2)
Convergence factor 0.117 0.051 0.039 0.145 0.074 0.055 0.118 0.051 0.039

A red–black Gauss–Seidel smoother is used. (h ¼ 2�8, second-order PC-basis, 4-term KL-expansion of afield with r ¼ 0:2 and Lc ¼ 1).
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6. Conclusions

We have extended and applied local Fourier analysis techniques to study the performance of iterative solv-
ers for PDEs involving random coefficients. To this end, the special structure of the discrete algebraic systems
arising from the spectral expansion approach has been exploited. The LFA shows that the convergence
depends crucially on the eigenstructure of a certain matrix, which characterizes the random structure of the
PDE. This analysis has enabled us to explain some of the features that are observed (also by other authors
[10]) in computational experiments.

We have also specified a set of random basis functions that lead to a complete decoupling of the model
problem into deterministic PDEs. The local Fourier analysis for the decoupling approach gives an indication
of the convergence properties that one can expect for the Generalized Polynomial Chaos approach.

The goal of our study was to gain some insights into the convergence behavior of the stochastic expansion
approach. To that end, we concentrated on a model problem that could be analyzed quantitatively. The
method does however extend to more challenging problems, e.g. problems on irregular finite element meshes,
to time-dependent problems, to different PDE operators, and so on.
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